

Blogpost No.2: Deep Learning Pipeline for Surface Scattering Data

L. Pithan, V. Starostin, A. Gerlach, A. Hinderhofer, F. Schreiber

University of Tübingen

Paper: End-to-End Deep Learning Pipeline for Real-Time Processing of Surface

Scattering Data at Synchrotron Facilities

Challenge

Data analysis is a major bottleneck in many fields of experimental science. With increasing

data rates of beamlines at modern synchrotron facilities, this bottleneck becomes even

critical for the success of surface diffraction experiments, in order to keep pace with the

high-speed data streams.

Traditionally, data analysis of experiments performed at synchrotron or neutron facilities

takes place after the beamline visit in the researcher’s home institution. Due to the ever-

increasing size and acquisition rates of modern area detectors, for many synchrotron users,

transferring terabytes of scattering data to the home institutes has become a challenge in

itself, not to mention analyzing those data on local computing resources. Even beyond the

data transfer and storage challenge there is the demand to make data-driven decisions

during the experiment, e.g., for real-time scattering studies of kinetic processes. Therefore,

online data processing and analysis have become key factors for many experiments.

Today, large-scale research facilities such as synchrotrons provide a powerful computing

infrastructure along with their experimental instruments. While computer clusters at

synchrotrons advance rapidly and give users access to a wide range of computing resources,

real-time data analysis based on user-developed software, usable at different beamlines and

facilities remains a challenge.

Solution

In our article (Synchrotron Radiation

News, 35:4, 21-27, npj Comput Mater

8, 101, 2022

https://doi.org/10.1038/s41524-022-

00778-8), we discuss challenges and

possible approaches for building a

Grazing Incidence X-ray Diffraction

(GIXD) data processing pipeline with

emphasis on machine learning applied

to data analysis. We demonstrate the

implementation of such a software

framework using gixi (Grazing Incidence

X-ray diffraction Intelligent pipeline),

an open-source package based on a

Detected diffraction peaks are identified and

matched against the diffraction profile of MAPbBr3

https://doi.org/10.1038/s41524-022-00778-8
https://doi.org/10.1038/s41524-022-00778-8

deep learning approach. It provides an end-to-end solution for automated

GIXD analysis, including image processing, detection of the diffraction peaks, peak intensity

extraction, and crystal structure identification. Our user-designed implementation allows a

straightforward integration into any cluster infrastructure based on the commonly used

Slurm Workload Manager.

Our Approach
We have developed a pipeline-based approach of GXID data processing. In general, GIXD

images contain rich information about the sample. Based on the specific scientific problem,

different types of analysis are required to extract the relevant properties of the studied

system. These may include the lattice parameters, the texture, and fractions of co-existing

mixtures in case of powder diffraction, time-dependent properties of the studied process in

case of in situ measurements. Due to the large number of related quantities, it can may be

inefficient to develop separate software solutions for each type of analysis. This is where

customizable pipelines gain in importance.

In the core of our pipeline, we embed a tailor-made neural network (npj Comput Mater 8,

101, 2022, https://doi.org/10.1038/s41524-022-00778-8). Deep learning is a promising

choice for analyzing complex 2D scattering data with various experimental artifacts and

diffraction features. In order to be able to use the neural network for peak detection, the

raw diffraction images obtained from the detector require certain pre-processing steps in

the beginning of the pipeline before they can be fed into the CNN (convolution neural

network). Following the peak detection, in a further step towards the end of the pipeline,

crystal structures present in the sample are identified based on the obtained peak positions

and comparison to known crystal structures (provided as CIF files). Due to the modular

approach of the software architecture, we emphasize that this model can be easily

combined with other indexing

algorithms for structure

identification.

Practicing Open Science
With the DAPHNE vision in

mind we followed the FAIR

principles when publishing

our work. DAPHNE4NFDI

works towards a

standardized, transparent and

traceable chain of all steps

from the raw data to the final

peer-reviewed scientific

publication.

Applying the guidelines provided in the DAPHNE proposal

(https://www.daphne4nfdi.de/downloads/Daphne_proposal.pdf) we provide interlinked

Scheme of the bidirectionally linked open-data publication chain

https://doi.org/10.1038/s41524-022-00778-8
https://www.daphne4nfdi.de/downloads/Daphne_proposal.pdf

example datasets from raw- to analyzed data as well as the source code

and parameters for all data processing steps involved in the data analysis chain using Zenodo

infrastructure.

In the future DAPHNE is addressing this challenge by encouraging and supporting the use of

SciCat (https://scicatproject.github.io), a data catalog developed within the PaN community

to facilitate traceability from data to publication and vice versa.

Additional links

Project DAPHNE4NFDI: https://www.daphne4nfdi.de/english/index.php

Further resources on this topic can be found on the Schreiber Research Group website:

http://www.soft-matter.uni-tuebingen.de/machine_learning_GIWAXS.html

If you are interested in a postdoc, PhD or master position in Prof. Schreiber’s group, please send an
e-mail to softmatter [at] ifap.uni-tuebingen.de.

https://scicatproject.github.io/
https://www.daphne4nfdi.de/english/index.php
http://www.soft-matter.uni-tuebingen.de/machine_learning_GIWAXS.html

