
  

 

Blogpost No.2: Deep Learning Pipeline for Surface Scattering Data 

L. Pithan, V. Starostin, A. Gerlach, A. Hinderhofer, F. Schreiber 

University of Tübingen 

Paper: End-to-End Deep Learning Pipeline for Real-Time Processing of Surface 

Scattering Data at Synchrotron Facilities 
 

Challenge 

Data analysis is a major bottleneck in many fields of experimental science. With increasing 

data rates of beamlines at modern synchrotron facilities, this bottleneck becomes even 

critical for the success of surface diffraction experiments, in order to keep pace with the 

high-speed data streams. 

Traditionally, data analysis of experiments performed at synchrotron or neutron facilities 

takes place after the beamline visit in the researcher’s home institution. Due to the ever-

increasing size and acquisition rates of modern area detectors, for many synchrotron users, 

transferring terabytes of scattering data to the home institutes has become a challenge in 

itself, not to mention analyzing those data on local computing resources. Even beyond the 

data transfer and storage challenge there is the demand to make data-driven decisions 

during the experiment, e.g., for real-time scattering studies of kinetic processes. Therefore, 

online data processing and analysis have become key factors for many experiments. 

Today, large-scale research facilities such as synchrotrons provide a powerful computing 

infrastructure along with their experimental instruments. While computer clusters at 

synchrotrons advance rapidly and give users access to a wide range of computing resources, 

real-time data analysis based on user-developed software, usable at different beamlines and 

facilities remains a challenge. 

Solution 

In our article (Synchrotron Radiation 

News, 35:4, 21-27, npj Comput Mater 

8, 101, 2022 

https://doi.org/10.1038/s41524-022-

00778-8), we discuss challenges and 

possible approaches for building a 

Grazing Incidence X-ray Diffraction 

(GIXD) data processing pipeline with 

emphasis on machine learning applied 

to data analysis. We demonstrate the 

implementation of such a software 

framework using gixi (Grazing Incidence 

X-ray diffraction Intelligent pipeline), 

an open-source package based on a 
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deep learning approach. It provides an end-to-end solution for automated 

GIXD analysis, including image processing, detection of the diffraction peaks, peak intensity 

extraction, and crystal structure identification. Our user-designed implementation allows a 

straightforward integration into any cluster infrastructure based on the commonly used 

Slurm Workload Manager. 

Our Approach 
We have developed a pipeline-based approach of GXID data processing.  In general, GIXD 

images contain rich information about the sample. Based on the specific scientific problem, 

different types of analysis are required to extract the relevant properties of the studied 

system. These may include the lattice parameters, the texture, and fractions of co-existing 

mixtures in case of powder diffraction, time-dependent properties of the studied process in 

case of in situ measurements. Due to the large number of related quantities, it can may be 

inefficient to develop separate software solutions for each type of analysis. This is where 

customizable pipelines gain in importance. 

In the core of our pipeline, we embed a tailor-made neural network (npj Comput Mater 8, 

101, 2022, https://doi.org/10.1038/s41524-022-00778-8). Deep learning is a promising 

choice for analyzing complex 2D scattering data with various experimental artifacts and 

diffraction features. In order to be able to use the neural network for peak detection, the 

raw diffraction images obtained from the detector require certain pre-processing steps in 

the beginning of the pipeline before they can be fed into the CNN (convolution neural 

network). Following the peak detection, in a further step towards the end of the pipeline, 

crystal structures present in the sample are identified based on the obtained peak positions 

and comparison to known crystal structures (provided as CIF files). Due to the modular 

approach of the software architecture, we emphasize that this model can be easily 

combined with other indexing 

algorithms for structure 

identification. 

 

Practicing Open Science 
With the DAPHNE vision in 

mind we followed the FAIR 

principles when publishing 

our work. DAPHNE4NFDI 

works towards a 

standardized, transparent and 

traceable chain of all steps 

from the raw data to the final 

peer-reviewed scientific 

publication.  

Applying the guidelines provided in the DAPHNE proposal 

(https://www.daphne4nfdi.de/downloads/Daphne_proposal.pdf) we provide interlinked 
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example datasets from raw- to analyzed data as well as the source code 

and parameters for all data processing steps involved in the data analysis chain using Zenodo 

infrastructure. 

In the future DAPHNE is addressing this challenge by encouraging and supporting the use of 

SciCat (https://scicatproject.github.io), a data catalog developed within the PaN community 

to facilitate traceability from data to publication and vice versa.  

 

Additional links 

Project DAPHNE4NFDI: https://www.daphne4nfdi.de/english/index.php 

Further resources on this topic can be found on the Schreiber Research Group website: 

http://www.soft-matter.uni-tuebingen.de/machine_learning_GIWAXS.html 

If you are interested in a postdoc, PhD or master position in Prof. Schreiber’s group, please send an 
e-mail to softmatter [at] ifap.uni-tuebingen.de. 
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